Data Clustering Using Multi-objective Differential Evolution Algorithms
نویسندگان
چکیده
The article considers the task of fuzzy clustering in a multi-objective optimization (MO) framework. It compares the relative performance of four recently developed multi-objective variants of Differential Evolution (DE) on over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation for the candidates is used for DE. A comparative study of four DE variants with two most well-known MO clustering techniques, namely the NSGA II (Non Dominated Sorting GA) and MOCK (MultiObjective Clustering with an unknown number of clusters K) is also undertaken. Experimental results reported for six artificial and four real life datasets (including a microarray dataset of budding yeast) of varying range of complexities indicates that DE can serve as a promising algorithm for devising MO clustering techniques.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملMULTI-OBJECTIVE OPTIMIZATION OF ARCH DAMS USING DIFFERENTIAL EVOLUTION METHODS
For optimization of real-world arch dams, it is unavoidable to consider two or more conflicting objectives. This paper employs two multi-objective differential evolution algorithms (MoDE) in combination of a parallel working MATLAB-APDL code to obtain a set of Pareto solutions for optimal shape of arch dams. Full dam-reservoir interaction subjected to seismic loading is considered. A benchmark ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملMulti-objective C-means Data Clustering Algorithm using Self-Adaptive Differential Evolution
: This paper proposes a Multi-objective C-means Data Clustering algorithm using Self-Adaptive Differential Evolution (DE) for improving the performance of data clustering by introducing three data clustering validity indices.. The proposed algorithm composed of three objectives: including the symmetry-index to maximize similarity within clusters, the compactness index to maximize dissimilarity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fundam. Inform.
دوره 97 شماره
صفحات -
تاریخ انتشار 2009